If you write any paper with the help of GeoPDEs to obtain your results, please cite one of the following references, according with the version and the features you use:

  1. R. Vázquez. A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0, Comput. Math. Appl., 72(3):523-554, 2016. DOI:10.1016/j.camwa.2016.05.010 Technical report Bibtex

  2. C. de Falco, A. Reali, R. Vázquez. GeoPDEs: a research tool for Isogeometric Analysis of PDEs, Adv. Engrg. Softw., 42(12):1020-1034, 2011. DOI:10.1016/j.advengsoft.2011.06.010 Bibtex

  3. E.M. Garau, R. Vázquez. Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines, Appl. Numer. Math., 123:57-78, 2018. DOI:10.1016/j.apnum.2017.08.006 Technical Report Bibtex

  4. C. Bracco, C. Giannelli, R. Vázquez. Refinement algorithms for adaptive isogeometric methods with hierarchical splines, Axioms, 7, 43, 2018. DOI: 10.3390/axioms7030043 Bibtex

  5. M. Carraturo, C. Giannelli, A. Reali, R. Vázquez. Suitably graded THB-spline refinement and coarsening: Towards an adaptive isogeometric analysis of additive manufacturing processes, Comput. Methods. Appl. Mech. Egnrg., 348:660–679, 2019. DOI: 10.1016/j.cma.2019.01.044 Preprint Bibtex

  6. C. Bracco, C. Giannelli, M. Kapl, R. Vázquez. Adaptive isogeometric methods with C1 (truncated) hierarchical splines on planar multi-patch domains, Math. Models Methods Appl. Sci., 33(9): 1829-1874, 2023. DOI: 10.1142/S0218202523500434 Preprint Bibtex

  7. C. Bracco, C. Giannelli, A. Reali, M. Torre, R. Vázquez. Adaptive isogeometric phase-field modeling of the Cahn-Hilliard equation: suitably graded hierarchical refinement and coarsening on multi-patch geometries, Comput. Methods Appl. Mech. Engrg., 417, no. 116355, 2023. DOI: 10.1016/j.cma.2023.116355 Preprint Bibtex